What is GIS?

- "GIS" stands for "Geographic Information Systems", although the term "Geographic Information Science" is gaining popularity.
 A GIS is a software platform for storing, organizing, viewing, querying, and transforming spatial data <u>models</u>.
- Two most prevalent software platforms are the expensive commercially licensed ESRI ArcGIS^{®™} and the free and open-source GRASS GIS platform. (Guess which one Luse?)

What is a GIS?

- GIS data is displayed and manipulated as map Layers.
- Layers can be thought of like transparencies on an overhead projector.
- They can be stacked for display, or can be used as variables in mathematic equations
- Data layers in a GIS are stored in either Vector or in Raster formats.

Vector Data

- Discreet geometrical objects which are either points, lines, or polygons (areas)
- Composed of a list of Vertices (X/Y pairs)
- Points have one vertex
 - Lines are composed of two or more vertices are joined according to geometrical functions (straight lines, arcs)
- Polygons are closed geometric shapes composed of perimeter lines enclosing an internal area, potentially associated with a centroid (in GRASS, but not other GIS's)

Graphic Display of Vector Object

Vector "line"

Table of XY coordinates of line vertices

Vector Data

- Discreet geometrical objects which are either points, lines, or polygons (areas)
- Composed of a list of Vertices (X/Y pairs)
- Points have one vertex
- Lines are composed of two or more vertices are joined according to geometrical functions (straight lines, arcs)
- Polygons are closed geometric shapes composed of perimeter lines enclosing an internal area, potentially associated with a centroid (in GRASS, but not other GIS's)
- Each vector object can have one or more associated Attributes
- Attributes are stored in a database, facilitating multidimensional data connections
 - Easy database editing with your favorite spreadsheet software

Multiple dimensions of data can be associated with each vector object

🖡 🗋 🚰 🚰 🔄 🚏 👯 👗 🛍 📇 • 🟈 🔊 • 🔍 - 💋 😓 Σ	- Ž Z A	100%	• 🕜 _₹ Ar
---------------------------------------	---------	------	---------------------

Perly with Change

S 3 4 0

		A1	-	fx ca	it 👘											
ſ		A	В	С	D	E	F	G	Н	1	J	K	L	M	N	C
	1	cat	Х	Y	UNIT	LITHICS	BASALT	POTTERY	BONE	SHELL	CHARCOAL	BOTANICALS	COPROLITES	INSECT_PAR	FOSSIL_SHE	TOTA
		- 1	0.250000	0.250000	A	2.840000	0.470000	0.260000	0.280000	0.320000	0.210000	0.010000	0.190000	0.010000	0.670000	0.430
1	3	2	0.250000	0.750000	в	4.110000	1.210000	0.540000	0.430000	1.870000	0.370000	0.030000	0.160000	0.000000	1.870000	1.160
З	4	3	0.250000	1.250000	C	2.740000	0.810000	0.490000	0.350000	0.640000	0.320000	0.010000	0.040000	0.010000	0.960000	0.660
1	5	4	0.250000	1.750000	D	1.520000	0.480000	1.000000	0.150000	0.800000	0.140000	0.050000	0.130000	0.010000	0.770000	0.610
	6	5	0.250000	2.250000	E	1.310000	0.490000	0.470000	0.360000	0.910000	0.210000	0.010000	0.090000	0.000000	1.400000	0.800
-[7	6	0.250000	2.750000	F	5.270000	0.890000	0.320000	0.240000	1.670000	0.380000	0.000000	0.000000	0.000000	1.480000	1.010
1	8	7	0.250000	3.250000	G	5.680000	0.840000	0.320000	0.090000	0.910000	0.200000	0.000000	0.020000	0.00000	0.720000	0.880
1	9	8	0.750000	0.250000	н	1.070000	0.650000	0.490000	0.130000	0.290000	0.310000	0.100000	0.510000	0.000000	0.170000	0.390
[10	9	0.750000	0.750000	Π.	2.060000	0.870000	0.910000	0.310000	0.790000	0.370000	0.030000	0.880000	0.000000	0.770000	0.800
	11	10	0.750000	1.250000	IJ	1.420000	0.770000	0.430000	0.330000	0.770000	0.390000	0.040000	0.100000	0.000000	0.540000	0.490
[12	11	0.750000	1.750000	IK	1.680000	0.750000	0.430000	0.360000	1.130000	0.470000	0.000000	0.150000	0.000000	1.130000	0.630
	13	12	0.750000	2.250000	L.	0.650000	0.530000	0.500000	0.170000	0.970000	0.270000	0.020000	0.330000	0.000000	1.120000	0.480
	14	13	0.750000	2.750000	M	4.060000	0.860000	0.410000	0.270000	1.150000	0.290000	0.000000	0.170000	0.000000	0.680000	0.780
	15	14	0.750000	3.250000	I N	5.000000	1.000000	1.480000	0.670000	1.100000	0.710000	0.000000	0.140000	0.000000	1.050000	1.110
	16	15	1.250000	0.250000	0	0.290000	0.170000	0.100000	0.190000	0.170000	0.210000	0.100000	0.250000	0.000000	0.210000	0.250
	17	16	1.250000	0.750000	IР	0.710000	0.630000	0.580000	0.310000	0.380000	0.520000	0.000000	0.080000	0.000000	0.830000	0.400
	18	17	1.250000	1.250000	Q	1.900000	0.880000	0.480000	0.520000	0.850000	0.600000	0.000000	0.270000	0.020000	0.790000	0.640
	19	18	1.250000	1.750000	R	1.420000	0.930000	0.470000	0.620000	1.280000	0.620000	0.030000	0.030000	0.000000	1.080000	0.650
	20	19	1.250000	2.250000	S	1.930000	0.720000	0.820000	0.320000	1.090000	0.700000	0.000000	0.000000	0.000000	1.040000	0.700
	21	20	1.250000	2.750000	T	2.260000	0.620000	0.100000	0.130000	0.310000	0.310000	0.000000	0.000000	0.000000	0.560000	0.490
	22	21	1.250000	3.250000	U	1.330000	0.840000	1.240000	0.310000	0.780000	0.180000	0.040000	1.430000	0.000000	0.860000	0.760
Ν	23	22	1.750000	0.250000	I V	0.520000	0.150000	0.730000	0.080000	0.230000	0.170000	0.040000	0.230000	0.000000	0.100000	0.270
	24	23	1.750000	0.750000	W	0.830000	0.670000	0.900000	0.210000	0.710000	0.260000	0.020000	0.380000	0.000000	0.430000	0.550
	25	24	1.750000	1.250000	X	0.140000	0.120000	0.360000	0.100000	0.330000	0.210000	0.000000	0.070000	0.000000	0.290000	0.190
	26	25	1.750000	1.750000	Υ	0.600000	0.950000	0.520000	0.240000	0.500000	0.290000	0.000000	0.000000	0.000000	0.980000	0.420
N	27	26	1.750000	2.250000	Z	0.380000	0.290000	0.250000	0.060000	0.230000	0.250000	0.000000	0.060000	0.000000	0.190000	0.170
	28	27	1.750000	2.750000	AA	1.780000	0.910000	1.290000	0.360000	0.560000	0.600000	0.020000	0.000000	0.000000	1.360000	0.700
	29	28	1.750000	3.250000	BB	1.740000	0.330000	0.590000	0.130000	0.330000	0.310000	0.000000	0.000000	0.000000	0.720000	0.420
	30	29	2.250000	0.250000	CC	0.780000	0.440000	0.810000	0.470000	0.530000	0.280000	0.000000	0.000000	0.000000	1.060000	0.48
1	31	30	2.250000	0.750000	DD	1.110000	0.360000	0.530000	0.720000	0.360000	0.170000	0.000000	0.000000	0.030000	0.640000	0.410
	32	31	2.250000	1.250000	EE	0.310000	0.050000	0.590000	0.130000	0.000000	0.080000	0.000000	0.000000	0.000000	0.130000	0.130
	33	32	2.250000	1.750000	FF	1.000000	0.600000	0.440000	0.290000	0.580000	0.310000	0.000000	0.000000	0.000000	0.620000	0.380
	î .		√_g34_m	icroartifacts	s_poin	ts/	0 000000	0.070000	0.5.0000	•	· · · · · · · · · · · · · · · · · · ·	0 000000			• (1
	Dra	w • 1	AutoSh	apes • 🔪 🖌		0 🗠 🖪	0 8	8 3-	<u></u>	- = = 3	t • • •	<u>/</u> -)	ଢ 🚄 - ≡	-		

NUM

Vector Data

- Discreet geometrical objects which are either points, lines, or polygons (areas)
- Composed of a list of Vertices (X/Y pairs)
- Points have one vertex
- Lines are composed of two or more vertices are joined according to geometrical functions (straight lines, arcs)
- Polygons are closed geometric shapes composed of perimeter lines enclosing an internal area, potentially associated with a centroid (in GRASS, but not other GIS's)
- Each vector object can have one or more associated Attributes
- Attributes are stored in a database, facilitating multidimensional data connections
- Easy database editing with your favorite spreadsheet software
- Data can be displayed thematically for easy visual analysis

Thematic Vector Points and Areas

Raster Data

- Continuous data (a matrix of values)
- Each layer has a maximum of 3.5 dimensions of data -- X, Y, Z, and Label
- Multiple layers can be stacked to represent many dimensions of data

Graphic Display of Raster Matrix

Raster "line"

Matrix of numbers

Raster Colored by Raster Value

	1491	1506	1521	1537	1555	1574	1593	1613	1632	1648	1659	1668
	1479	1493	1509	1530	1550	1568	1585	1607	1630	1650	1663	1674
	1467	1481	1499	1521	1542	1562	1581	1603	1626	1647	1666	1682
	1466	1478	1492	1513	1533	1556	1576	1598	1621	1646	1669	1690
	1480	1492	1503	1518	1537	1558	1579	1601	1624	1649	1673	1697
	1498	1510	1521	1533	1546	1564	1584	1605	1627	1651	1676	1703
الإيسا	1510	1523	1535	1547	1561	1577	1593	1610	1631	1654	1679	1706
	1514	1528	1543	1560	1576	1593	1607	1622	1639	1660	1686	1713
	1521	1532	1548	1568	1587	1605	1622	1641	1656	1676	1698	1723
	1578	1583	1584	1585	1595	1614	1635	1653	1670	1686	1706	1730
	1579	1585	1586	1589	1602	1620	1638	1656	1673	1688	1704	1719

Raster Data

- Continuous data (a matrix of values)
- Each layer has a maximum of 3.5 dimensions of data
 -- X, Y, Z, and Label
 - Multiple layers can be stacked to represent many dimensions of data
- Display of data can be adjusted by ranges for analysis

Display by Range

GRASS GIS Layer Manager	0									
🗔 La 2 2 诺 🛋 🌿 🖽 🖽 La 🛛										
Display 1	4 Þ 🗙									
🗹 📫 elevation.dem@PERMANENT (opacity: 69%) 📊										
🗹 📑 elevation10m_shaded@PERMANENT (opacity: 100%) 🚽										

Map layers for each o	play Command output
-----------------------	---------------------

000	d.rast [dis	play, raste	r]	
Displays and overlay on the graphics mon	s raster ma itor.	p layers in	the active	display frame
Required Selection	Optional	Manual		4 Þ ×
Invert catlist multiple] List of categori 1300-2000	es to be dis	played (IN	IT maps):	(i) (catlist, string)
multiple] List of values to	be display	ved (FP ma	.ps):	(vallist, string)

?

OK

d.rast -o map=elevation.dem@PERMANENT catlist=1300-2000

Apply

Close

Raster Data

- Continuous data (a matrix of values)
 - Each layer has a maximum of 3.5 dimensions of data -- X, Y, Z, and Label
- Multiple layers can be stacked to represent many dimensions of data
 - Display of data can be adjusted by ranges for analysis
 - Complex statistics and matrix math (map algebra) can be calculated at each pixel or between pixels of single or multiple layers.

Map Algebra

	Mapcalo	operators		Name of new map to create
+	•	&	I	
*	1		1	Insert existing map
>	>=	88		elevation@PERMANENT
<	<=	<<	>>	Insert mapcalc function
==	!=	>>>	!	
%	^	?:	~	() Clear
vation@PE	RMANENT > 150	0, (elevation@PE	RMANENT * 4), 1	
vation@PE	RMANENT > 150	0, (elevation@PE	RMANENT * 4), - Close	

Raster Data

- Continuous data (a matrix of values)
- Each layer has a maximum of 3.5 dimensions of data -- X, Y, Z, and Label
- Multiple layers can be stacked to represent many dimensions of data
 - Display of data can be adjusted by ranges for analysis
- Complex statistics and matrix math (map algebra) can be calculated at each pixel or between pixels of single or multiple layers.
- This allows for complex data transformation and simulation of phenomena that cannot be practically measured/observed in real life
 - Can be used to model complex 3-D surfaces.

Various 3-D displays of a Raster DEM

Original Raster File

Raster Data

- Continuous data (a matrix of values)
- Each layer has a maximum of 3.5 dimensions of data -- X, Y, Z, and Label
- Multiple layers can be stacked to represent many dimensions of data
 - Display of data can be adjusted by ranges for analysis
- Complex statistics and matrix math (map algebra) can be calculated at each pixel or between pixels of single or multiple layers.
- This allows for complex data transformation and simulation of phenomena that cannot be practically measured/observed in real life
 - Can be used to model complex 3-D surfaces.

Ò

Raster surfaces can be interpolated from discreet data (ie. vector points)

So Which Type of Data Do I Use?

- Vectors are better for associating many data types with one spatial object (ie. archaeological site locations, farm fields, sampling locations etc.) in one file
- Vectors can only be used to represent discreet phenomena, but can be used to represent truly scaleless complex geometry
- Easy to create informative thematic maps (nice for publication figures!)
 - Great for cartography and making printed maps

Discreet Data

Feature perspective (digitally stored as vectors)

Surface perspective (digitally stored as a raster matrix)

Vector format preserves shape, but no map algebra

So Which Type of Data Do I Use?

- Raster's are better at representing massive amounts of spatially continuous data
- They are also better for doing mathematical operations on that data
- They can only represent one dimension per layer, and are subject to resolution constraints
- Rasters can be used for modeling (eg. of surfaces, complex systems, cellular automata, etc.)

Continuous Data

Raster Elevation Data (Digital Terrain Model)

Vector Elevation Data (Contour Map)

Raster has no gaps in data, but has a specific scale

Data Transformation

- You are not "stuck" with one or the other, you can transform between the two data types
- Direct transformation

Data Transformation: Direct

0	0	0	4	4	0	3	3	0	0	_0
0	0	0	4	4	4	3	3	3	3	_0_
3	3	0	4	4	4	3	3	3	3	0
3	3	3	0	4	4	0	3	3	0	0
3	3	3	0	4	4	4	0	0	0	0
0	3	3	3	0	4	4	4	4	0	0
0	3	3	0	0	0	4	4	4	×	0

Data Transformation

- You are not "stuck" with one or the other, you can transform between the two data types
- Direct transformation
- Simplification from raster to vector

Data Transformation: Simplification

Data Transformation

- You are not "stuck" with one or the other, you can transform between the two data types
- Direct transformation
- Simplification from raster to vector
- Interpolation from vector to raster

Data Transformation: Interpolation

Output: Continuous Data

Density Probability Surface

5 meters

Input: Discreet Data 6.0 **Artifact Point Densities** 4.5 5.68 5 1.33 1.74 1.31 5.27 4.06 2.26 1.78 0.89 3.0 1.31 0.65 1.93 0.38 1.33 1.52 1.68 1.42 0.6 2.74 1.42 1.9 0.14 0.31 .5 4.11 2.06 0.71 0.83 1.11 .84 1.07 0.29 0.52 0.78 0